Galvanized Steel Overhead Ground Wire Corrosion Mechanism and Spectral Detection

DENG Shanquan, ZHU Junwei, ZHANG Xingsen, BIAN Meihua, CHEN Heng, HE Yuyin, JI Shuolei

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (12) : 94-102.

PDF(7925 KB)
PDF(7925 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (12) : 94-102. DOI: 10.7643/ issn.1672-9242.2025.12.012
Key Projects Equipment

Galvanized Steel Overhead Ground Wire Corrosion Mechanism and Spectral Detection

  • DENG Shanquan, ZHU Junwei, ZHANG Xingsen, BIAN Meihua, CHEN Heng, HE Yuyin, JI Shuolei
Author information +
History +

Abstract

The work aims to study the corrosion mechanism of the GJ-50 galvanized steel overhead ground wire in Guangxi when it is in service due to the synergistic effect of electrochemical corrosion and environmental medium. In this study, a neutral salt spray test (NSS) of 5wt.% NaCl and 25 ℃ was conducted to simulate the local high temperature, high humidity and high salt environment, and an accelerated corrosion test of the GJ-50 overhead ground wire was carried out for 20-960 h. Through weight loss test, surface morphology observation and reflectance spectrum analysis (350 nm-2 500 nm), the corrosion evolution law was systematically studied and analyzed. The results showed that the average weight loss in the corrosion weight loss test was 62.208 g/m2 at 20 h, increased to 173.389 g/m2 at 90 h, reached 442.085 g/m2 at 360 h, increased to 534.324 g/m2 at 960 h, and the weight loss rate with increasing salt spray time were 3.111, 1.926, 1.228 and 0.556 6 g/m2·h respectively. The macroscopic morphology showed that the corrosion process went through four stages: local corrosion of the galvanized layer, large-scale destruction of the galvanized layer, exposure of the steel matrix and corrosion of the steel matrix. The microscopic analysis confirmed that the protective effect of the zinc layer of salt spray at 960 h had completely failed, and the corrosion of the steel matrix was serious. From the EDS data, it was known that the zinc layer still existed in the sample when the salt spray time was 20 h and 90 h, while the zinc layer disappeared in the sample with the salt spray time of 360 h and 960 h, and iron oxide appeared. The following conclusions are drawn from this experiment. The corrosion weight loss increases monotonically with the extension of salt spray time, and the initial corrosion rate is significantly higher than that in the later stage, which is attributed to the barrier effect formed by the deposition of corrosion products. The corrosion law of the overhead ground wire was revealed by macroscopic morphology detection, and the microscopic morphology and spectral analysis were used to verify the corrosion law. This study reveals the corrosion dynamics and spectral response mechanism of galvanized steel strands, and provides a theoretical basis for the corrosion protection and service safety assessment of transmission lines in Guangxi.

Key words

galvanized steel / salt spray test / corrosion mechanism / protection failure / infrared spectroscopy detection / corrosion product correspondence

Cite this article

Download Citations
DENG Shanquan, ZHU Junwei, ZHANG Xingsen, BIAN Meihua, CHEN Heng, HE Yuyin, JI Shuolei. Galvanized Steel Overhead Ground Wire Corrosion Mechanism and Spectral Detection[J]. Equipment Environmental Engineering. 2025, 22(12): 94-102 https://doi.org/10.7643/ issn.1672-9242.2025.12.012

References

[1] 黄清岩. 一起输电线路地线断线故障的处理和分析[J]. 电世界, 2015, 56(9): 16-17.
HUANG Q Y.Treatment and Analysis of a Broken Ground Wire Fault of Transmission Line[J]. Electrical World, 2015, 56(9): 16-17.
[2] 刘敏, 蒋一博, 林安, 等. 架空地线的腐蚀研究现状[J]. 材料保护, 2018, 51(9): 89-93.
LIU M, JIANG Y B, LIN A, et al.Research Status of Corrosion for Overhead Ground Wire[J]. Materials Protection, 2018, 51(9): 89-93.
[3] 黄殷辉. 南方电网输电线路杆塔大气腐蚀等级评估及腐蚀行为研究——广东省[D]. 广州: 华南理工大学, 2017.
HUANG Y H.Evaluation of Atmospheric Corrosion Grade and Study on Corrosion Behavior of Transmission Line Towers in Southern Power Grid—Guangdong Province[D]. Guangzhou: South China University of Technology, 2017.
[4] 郭凯, 岳增武, 李辛庚. 架空地线腐蚀与防护技术发展现状[J]. 山东电力技术, 2014, 41(5): 25-29.
GUO K, YUE Z W, LI X G.The Development of Anti-Corrosion Technology for Overhead Ground Wires[J]. Shandong Electric Power, 2014, 41(5): 25-29.
[5] 李文翰, 尹学涛, 周学杰, 等. 电网输变电设备钢结构和镀锌构件的大气腐蚀与防护措施[J]. 材料保护, 2018, 51(10): 114-118.
LI W H, YIN X T, ZHOU X J, et al.Summary on Atmospheric Corrosion and Protection Measure of Steel Components and Galvanized Components for Transmission and Distribution Projects[J]. Materials Protection, 2018, 51(10): 114-118.
[6] 夏晓健, 金焱, 乔汉文, 等. 输变电设备腐蚀状况调查与分析[J]. 腐蚀科学与防护技术, 2019, 31(2): 121-127.
XIA X J, JIN Y, QIAO H W, et al.Survey on Corrosion of Power Transmission and Transformation Equipment[J]. Corrosion Science and Protection Technology, 2019, 31(2): 121-127.
[7] 陈云翔, 倪清钊, 林德源, 等. 大气环境下电网设备金属材料的腐蚀及服役寿命预测研究进展[J]. 材料导报, 2016, 30(21): 89-96.
CHEN Y X, NI Q Z, LIN D Y, et al.Research Progress in Corrosion and Service Life Prediction of Metal Materials in Grid Equipment under Atmospheric Environment[J]. Materials Review, 2016, 30(21): 89-96.
[8] MORCILLO M, CHICO B, DÍAZ I, et al. Atmospheric Corrosion Data of Weathering Steels. a Review[J]. Corrosion Science, 2013, 77: 6-24.
[9] 冯利军, 董鹏飞, 程正冲, 等. 镀锌板在不同加速腐蚀环境下的腐蚀行为研究[J]. 表面技术, 2017, 46(8): 246-253.
FENG L J, DONG P F, CHENG Z C, et al.Corrosion Behavior of Galvanized Sheet in Different Accelerated Corrosion Environment[J]. Surface Technology, 2017, 46(8): 246-253.
[10] 贾慧淑. 镀锌钢板耐腐蚀性能影响因素分析[J]. 河北冶金, 2018(2): 21-25.
JIA H S.Influencing Factors Analysis of Corrosion Resistance of Galvanized Steel Sheet[J]. Hebei Metallurgy, 2018(2): 21-25.
[11] 卢银炜, 赵港, 韦佩才, 等. 高压架空输电线路锈蚀地线力学性能分析[J]. 红水河, 2023, 42(1): 109-112.
LU Y W, ZHAO G, WEI P C, et al.Mechanical Properties Analysis of Corroded Grounding Wire of High Voltage Overhead Transmission Line[J]. Hongshui River, 2023, 42(1): 109-112.
[12] 杜立成. 碳钢在盐雾环境下的腐蚀模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.
DU L C.Simulation Study on Corrosion of Carbon Steel in Salt Spray Environment[D]. Harbin: Harbin Institute of Technology, 2022.
[13] 张广友. 镀锌钢绞线盐雾试验分析[J]. 金属制品, 2023, 49(4): 48-51.
ZHANG G Y.Analysis of Salt Spray Test on Galvanized Steel Strand[J]. Metal Products, 2023, 49(4): 48-51.
[14] 刘涛, 王胜民, 赵晓军. 耐候钢锈层的稳定化处理及锈层形成[J]. 中国表面工程, 2019, 32(6): 98-104.
LIU T, WANG S M, ZHAO X J.Stabilization Treatment and Formation of Rust Layer on Weathering Steel[J]. China Surface Engineering, 2019, 32(6): 98-104.
[15] 陈威, 焦小雨, 赵自强, 等. 热镀锌钢盐雾腐蚀行为及机理研究[J]. 陕西科技大学学报, 2021, 39(4): 130-135.
CHEN W, JIAO X Y, ZHAO Z Q, et al.Study on Salt Spray Corrosion Behavior and Mechanism of Hot Dip Galvanized Steel[J]. Journal of Shaanxi University of Science & Technology, 2021, 39(4): 130-135.
[16] 曾佳俊, 周学杰, 吴军, 等. 金属材料大气腐蚀试验相关性与寿命预测研究现状[J]. 腐蚀科学与防护技术, 2015, 27(1): 90-94.
ZENG J J, ZHOU X J, WU J, et al.Research Status of Atmospheric Corrosion Test Correlation and Life Prediction of Metal Materials[J]. Corrosion Science and Protection Technology, 2015, 27(1): 90-94.
[17] 倪清钊. 电力金属材料的腐蚀研究与寿命预测[D]. 上海: 上海电力学院, 2017.
NI Q Z.Corrosion Research and Life Prediction of Power Metal Materials[D]. Shanghai: Shanghai University of Electric Power, 2017.
[18] 何成, 游溢, 王宗江, 等. 电网碳钢材料腐蚀预测模型研究[J]. 装备环境工程, 2025, 22(2): 151-159.
HE C, YOU Y, WANG Z J, et al.Corrosion Prediction Model of Carbon Steel for Power Grid[J]. Equipment Environmental Engineering, 2025, 22(2): 151-159.
[19] 陈敏娟, 陈浩, 陆松. 锌及锌合金镀层盐雾试验腐蚀形态研究[J]. 环境技术, 2020, 38(3): 56-60.
CHEN M J, CHEN H, LU S.Study on Corrosion Morphology of Zinc and Zinc Alloy Coatings by Salt Spray Test[J]. Environmental Technology, 2020, 38(3): 56-60.
[20] 黄涛, 陈小平, 王向东, 等. pH值对Q235钢在模拟土壤中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 31-38.
HUANG T, CHEN X P, WANG X D, et al.Effect of p H Value on Corrosion Behavior of Q235 Steel in an Artificial Soil[J]. Journal of Chinese Society for Corrosion and Protection, 2016, 36(1): 31-38.
[21] EDAVAN R P, KOPINSKI R.Corrosion Resistance of Painted Zinc Alloy Coated Steels[J]. Corrosion Science, 2009, 51(10): 2429-2442.
[22] GOIDANICH S, LAZZARI L, ORMELLESE M. AC Corrosion.Part 2: Parameters Influencing Corrosion Rate[J]. Corrosion Science, 2010, 52(3): 916-922.
[23] 王平, 孙心利, 马东伟, 等. 输变电设备大气腐蚀情况调查与分析[J]. 腐蚀科学与防护技术, 2012, 24(6): 525-526.
WANG P, SUN X L, MA D W, et al.Investigation and Analysis of Atmospheric Corrosion of Power Transmission and Transformation Equipment[J]. Corrosion Science and Protection Technology, 2012, 24(6): 525-526.
[24] 王劲, 黄青丹, 刘静, 等. 镀锌钢在模拟广州地区大气环境中的室内加速腐蚀研究[J]. 材料研究学报, 2018, 32(8): 631-640.
WANG J, HUANG Q D, LIU J, et al.Accelerated Indoor Corrosion of Galvanized Steel in a Simulated Atmospheric Environment of Guangzhou Area[J]. Chinese Journal of Materials Research, 2018, 32(8): 631-640.
[25] 武志富, 李素娟. 氢氧化锌和氧化锌的红外光谱特征[J]. 光谱实验室, 2012, 29(4): 2172-2175.
WU Z F, LI S J.Infrared Spectra Characteristics of Zinc Hydroxide and Zinc Oxide[J]. Chinese Journal of Spectroscopy Laboratory, 2012, 29(4): 2172-2175.
[26] 陈心欣, 关蕾, 李万江, 等. 模拟大气中Q235钢的早期腐蚀动力学行为[J]. 腐蚀与防护, 2021, 42(5): 18-21.
CHEN X X, GUAN L, LI W J, et al.Kinetic Behavior of Q235 Steel at Initial Stage of Corrosion in Simulated Atmosphere[J]. Corrosion & Protection, 2021, 42(5): 18-21.
[27] RAMAN A, KUBAN B, RAZVAN A.The Application of Infrared Spectroscopy to the Study of Atmospheric Rust Systems—I. Standard Spectra and Illustrative Applications to Identify Rust Phases in Natural Atmospheric Corrosion Products[J]. Corrosion Science, 1991, 32(12): 1295-1306.
[28] 王军, 赵绪安, 许振华. 金属羰基化合物[CpFe(CO)2] 2与金属氧化物表面作用的傅里叶变换漫反射和光声红外光谱研究[J]. 光谱学与光谱分析, 1997, 17(5): 45-54.
WANG J, ZHAO X A, XU Z H.The Study of Interactions of[CpFe(Co)2] 2 with Surface of Alumina and Titania Supports by Fourier Transform Diffuse Reflection and Photoacoustic Infrared Spectroscopy[J]. Spectroscopy and Spectral Analysis, 1997, 17(5): 45-54.

Funding

Science and Technology Project of Guangxi Power Grid Co., Ltd (GXKJXM20240135)
PDF(7925 KB)

Accesses

Citation

Detail

Sections
Recommended

/